This document contains errata, notes, and some programming notes for the first edition (2008) of "Statistical Computing with R", ISBN 978-1-58488-545-0 (Hardcover). For readers of an ebook version, the list has been updated with margin notes that give more details about the location than the page number.

Errata

p. 11 ¹ For R versions >= 3.0.0, mean for data frames is defunct.
 Change the function mean to colMeans:

 by(iris[,1:4], iris$Species, colMeans)

p. 30 Last line:² $x \geq 0, \nu = 1,2,\ldots$

p. 35 ³In the first two displayed equations: lim.

p. 58 Item 4. ⁴

\[Z_1 = \sqrt{-2 \log U \cos(2\pi V)}, \]
\[Z_2 = \sqrt{-2 \log U \sin(2\pi V)} \]

p. 114 Example 4.11⁵ In stars, the labels argument must be a vector of character strings: use levels of the factor for labels.

 stars(x[4:8], draw.segments = TRUE,
 labels = levels(x$sp), nrow = 4,
 ylim = c(-2,10), key.loc = c(3,-1))

p. 121 ⁶ In step 2: $g(X) = \frac{1}{m} \sum_{i=1}^{m} g(X_i)$.

p. 132 ⁷ In sentence above (5.9): $\hat{\theta}_c = g(X) + c(f(X) - \mu)$.

p. 142 ⁸Example 5.10.
 The standard errors will be the vector se/sqrt(m), so the summary is:

 > rbind(theta.hat, se/sqrt(m))
 theta.hat 0.524114007 0.531358351 0.5461507 0.5250698759 0.526049238
 0.002436559 0.004181264 0.0096613 0.0009658794 0.001427685

p. 143 In "Variance in Importance Sampling"⁹, in the equation for $Var(\hat{\theta})$, ds should be dx in the integral.

¹ Section 1.6, Data Frames
² Section 2.3, Chisquare and t
³ Section 2.5
⁴ Section 3.4
⁵ Section 4.5.3, code for segment plot in Figure 4.10
⁶ Section 5.2.1, Example 5.2
⁷ Section 5.5
⁸ Section 5.6
⁹ Section 5.6
Table 6.1 \(10\) The right two columns reporting \(n \hat{s}e\) are not correct. To obtain results for \(n \hat{MSE}\) in Table 6.1, set \(\text{seed}(522)\). The corrected table is given below.

<table>
<thead>
<tr>
<th>(k)</th>
<th>(n \hat{MSE})</th>
<th>(n \hat{s}e)</th>
<th>(n \hat{MSE})</th>
<th>(n \hat{s}e)</th>
<th>(n \hat{MSE})</th>
<th>(n \hat{s}e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.976</td>
<td>0.140</td>
<td>6.229</td>
<td>0.353</td>
<td>11.485</td>
<td>0.479</td>
</tr>
<tr>
<td>2</td>
<td>1.019</td>
<td>0.143</td>
<td>1.954</td>
<td>0.198</td>
<td>4.126</td>
<td>0.287</td>
</tr>
<tr>
<td>3</td>
<td>1.009</td>
<td>0.142</td>
<td>1.304</td>
<td>0.161</td>
<td>1.956</td>
<td>0.198</td>
</tr>
<tr>
<td>4</td>
<td>1.081</td>
<td>0.147</td>
<td>1.168</td>
<td>0.153</td>
<td>1.578</td>
<td>0.178</td>
</tr>
<tr>
<td>5</td>
<td>1.048</td>
<td>0.145</td>
<td>1.280</td>
<td>0.160</td>
<td>1.453</td>
<td>0.170</td>
</tr>
<tr>
<td>6</td>
<td>1.103</td>
<td>0.149</td>
<td>1.395</td>
<td>0.167</td>
<td>1.423</td>
<td>0.169</td>
</tr>
<tr>
<td>7</td>
<td>1.316</td>
<td>0.162</td>
<td>1.349</td>
<td>0.164</td>
<td>1.574</td>
<td>0.177</td>
</tr>
<tr>
<td>8</td>
<td>1.377</td>
<td>0.166</td>
<td>1.503</td>
<td>0.173</td>
<td>1.734</td>
<td>0.186</td>
</tr>
<tr>
<td>9</td>
<td>1.382</td>
<td>0.166</td>
<td>1.525</td>
<td>0.175</td>
<td>1.694</td>
<td>0.184</td>
</tr>
<tr>
<td>10</td>
<td>1.491</td>
<td>0.172</td>
<td>1.646</td>
<td>0.181</td>
<td>1.843</td>
<td>0.192</td>
</tr>
</tbody>
</table>

p. 187 Line 1.\(^{11}\) Remove hat from the first ‘se’.

p. 200 Example 7.10. Misplaced right paren.; correction: \(^{12}\)

\[
\text{#normal}
\text{print(boot.obj$t0 + qnorm(alpha) * sd(boot.obj$t))}
\]

p. 204 \(^{13}\)

\[
\hat{\theta} = \frac{\sum_{i=1}^{n} (\theta(i) - \hat{\theta})^3}{6 \left(\sum_{i=1}^{n} (\theta(i) - \hat{\theta})^2 \right)^{3/2}},
\]

(7.11)

p. 240 Example 8.13 (Distance covariance test): In the function \(\text{ndCov2}\), line 3 should be

\[
q1 <- p + 1
\]

p. 246 First paragraph, in second sentence:\(^{14}\) “\(n\) tends to infinity” should be “\(m\) tends to infinity”.

p. 260 \(^{15}\) Last paragraph: delete the second sentence “Then an observed sample is generated.”

p. 263 Example 9.7. \(^{16}\)

\[
E[X_2 | x_1] = \mu_2 + \frac{\sigma_2}{\sigma_1} (x_1 - \mu_1)
\]

p. 283 \(^{17}\) Sturges’s Rule: “For large \(k\) (large \(n\)) the distribution of Binomial(\(n, 1/2\)) is…”

p. 287 \(^{18}\) In equation (10.3) for \(h_n^*\): replace \(n\) with \(n^{-1}\). See Scott [241] equation (3.15).
p. 312 Example 10.15. The mean vectors used to generate the samples in the code and in the plots in Figure 10.13 are
\[\mu_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \quad \mu_2 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}, \quad \mu_3 = \begin{bmatrix} 4 \\ -1 \end{bmatrix}. \]

p. 315 Exercise 10.5. The skewness adjustment factor is given in (10.8).

Notes

p. 56 Remark on Example 3.7. Although 6 is an upper bound, it is not the least upper bound. The generator is more efficient if \(c = 1.5 \), the maximum value of \(f(x)/g(x) \) for \(0 \leq x \leq 1 \).

p. 57 Code above para. 2: #See Ch. 2

p. 71–72 Example 3.16, summary statistics. The \texttt{rmvneigen} generator takes the covariance matrix \(\Sigma \) as an argument, so in general one may want to display \(\text{cov}(X) \) for comparison with \(\Sigma \) rather than the sample correlation matrix \(\text{cor}(X) \). (Here our \(\Sigma \) was a correlation matrix.)

p. 178–179 Examples 6.14–6.15. Although mathematically it is not an error, it is unnecessary to subtract the sample means in the expression tests of Example 6.14 because the sample means are subtracted in the function \texttt{count5test}. Mathematically, if \(Z_i = X_i - \bar{X} \), then \(Z = 0 \). The same is true in the expression for \(\text{alphahat} \) in Example 6.15. The \texttt{count5test} can be applied without centering the data first, as in Example 6.16.

p. 225–228 Examples 8.4–8.6. The \texttt{knnFinder} package with \texttt{nn} function for finding nearest neighbors has been withdrawn from CRAN. These examples have been revised using the \texttt{ann} function in the \texttt{yaImpute} package.

p. 323–324 Example 11.3. In \texttt{system.time} the timings are hardware dependent; however, the vectorized version should be faster on all platforms.

pp. 338–339 Example 11.11. The first code snippet will produce a graph similar to Figure 11.3 but with x-axis ranging from about 2 to 8. To produce Figure 11.3 as shown, replace 8 with 15 in \texttt{seq(2, 8, .001)}.

p. 341 Example 11.12. The histograms will of course vary slightly from Figure 11.4 because the data is generated at random. According to my notes, \texttt{set.seed(333)} before the first line of code should produce samples matching the histograms as shown on page 341.
See the note below concerning `par(ask=TRUE)` to wait for user input before displaying each graph.

p. 342–343 Example 11.13. set.seed(333) was set prior to run.

Programming Notes

1. `curve` is convenient for plotting a function. It can replace `lines` in some examples; e.g. in Example 3.2 to add the density curve to the histogram, instead of `lines` we can use:

```r
curve(3*x^2, add=TRUE)
```

2. Displaying a sequence of graphs: `par(ask=TRUE)` has the effect that the user is asked for input before each new figure is drawn. Follow it with `par(ask=FALSE)` to restore to default behavior.

3. `sapply` can be used instead of `apply` in some examples, which eliminates the need for `MARGIN` and the need for the argument to have a dimension attribute. See e.g. Example 5.4 on page 123. The lines:

```r
dim(x) <- length(x)
p <- apply(x, MARGIN=1, function(x, z) {mean(z < x)}, z=z)
```

can be replaced with either version below:

```r
p <- sapply(x, FUN=function(x,z) mean(z<x), z=z)
p <- sapply(x, function(x) mean(z<x))
```

4. A more elegant approach to the comparison of generators in Example 3.19 is to wrap the repeated statements in a function that takes the name of the generator (e.g. `rmvn.eigen`) as an argument. An example of a function that has a functional argument is `boot`; see Example 7.10 for a typical example.

Acknowledgements

Thanks to several readers who sent comments, corrections, and suggestions.