Glaciers
- Large, long-lasting mass of ice, formed on land that moves.
- Driving force for glacier movement is **gravity**.
- Importance of glaciers:
 - Record of climate / atmospheric change
 - Economic deposits of sand and gravel
 - Freshwater reservoirs and aquifers
 - Landscape formation

Distribution of Glaciers
At present, there are two major glacial regions:
1. **Antarctica**
 - ~85% of glacial ice is on Antarctica
 - Antarctica ice sheet is up to 5 km thick and is as large as the U.S. and Mexico combined.
2. **Greenland**
 - ~10% of glacial ice is on Greenland
 - Greenland ice sheet is ~1.5 km thick.

Types of Glaciers
A. Confined to valleys
 - **Valley** glaciers
 - Associated with **Alpine** (mountain) glaciation.
 - Flow from higher to lower elevation like water in a stream channel.
B. Not confined to valleys
 - **Ice cap** - covers area <50,000 km²
 - **Ice sheet** - covers area >50,000 km²
 - Associated with **continental** glaciation
 - Flow downward and outward from central highpoint largely unconfined by underlying topography
 - See fig. 12.3
Formation Glacial Ice

- As snow is buried and compressed by the weight of overlying snow it changes from:
 - snow → granular snow → firn → glacial ice
- During the transformation, the density increases and the amount of trapped air decreases.
- See fig. 12.4

Formation of Glaciers

- Glaciers form in regions where the amount of snow that falls during winter exceeds amount that melts during summer.
- Need combination of cold and moisture.
 - Polar regions (high latitudes)
 - High elevations (high altitude)
 - Area of high winter snowfall.

Glaciers form when...

“Accumulation exceeds Ablation”
- Accumulation is addition of snow by precipitation.
- Ablation (wasting) is loss of snow/ice by:
 - Melting
 - Calving
 - Sublimation
Glacial Budget

- **Zone of Accumulation**
 - Upper portion of glacier where some snow remains from previous year.

- **Zone of Ablation (Wasting)**
 - Lower part of glacier where there is net loss of glacial snow/ice during the year.

- **Snowline**
 - Boundary between permanent snow and seasonal snow (zones of accumulation and ablation).

- **Terminus**
 - Extremity or lower edge of glacier.

 See fig. 12.16

Glacial Budget and Movement

- **Advancing glaciers**
 - Positive budget, terminus advancing

- **Receding glaciers**
 - Negative budget, terminus retreating.

Glacial Movement

- Glaciers flow due to gravitational forces acting on them.
- Flow at the base and sides of glaciers is greatly inhibit by friction.
- Rates of flow vary with:
 - Slope steepness
 - Precipitation
 - Temperature
- Typical rates are cm’s to m’s per day, but glaciers can ‘surge’ at speeds of hundreds of meters per day.
Mechanisms of Movement

- **Basal slip**
 - Entire glacier slides over bedrock. Water at base can greatly accelerate rate.
- **Plastic (internal) flow**
 - Glacier moves by plastic deformation of ice grains in response to the stress of overlying mass.
- **Brittle fracture**
 - Upper part of glaciers (top 50 m) represents a rigid zone where glacial ice fractures due to tensional forces, forming open fissures called crevasses.
- See figs. 12.8, 12.10

Glacial Erosion

- At base of glacier
 - Plucking
 - Abrasion
 - Glacial Striations
 - Rock flour
 - See fig. 12.14
- At top and sides of glacier
 - Frost wedging and erosion of slopes
 - See fig. 12.21

Erosional Landforms

- **Alpine Glaciers**
 - U-shaped valleys
 - Hanging valleys
 - Cirque
 - Tarns
 - Horn
 - Arete
 - See fig. 12.16
- **Continental Glaciers**
 - Striations and grooves in rock
 - Rounded hills and mountains
Glacial Deposits

- **Drift** - all rock and sediments transported and deposited by a glacier.
 - **Till** - drift deposited directly from glacial ice. Typically poorly sorted.
 - **Striated drift (Outwash)** - drift transported by glacier but deposited by streams. Tend to be well sorted, layered deposits.

Till Landforms

- **Erratics**
 - Large boulders transported by glacier and deposited some distance from original outcrop.

- **Moraines** (figs. 12.26, 12.29)
 - **End or terminal moraines** - deposited at terminus.
 - **Lateral or medial moraines** - deposited along sides.
 - **Ground or recessional moraines** - deposited at base during melting/retreat.

- **Drumlin** (fig. 12.30)
 - Elongate hill formed when flows over and reshapes a mound of previously deposited drift.

Stratified Drift Landforms

- **Outwash** (fig. 12.32)
 - sediment deposited by streams beyond terminus of glacier.
 - **Outwash plain** - Broad level surface composed of outwash.

- **Kame**
 - small mound or ridge of sediment layers deposited by stream at glacier margin.

- **Esker** (fig. 12.31)
 - long ridge formed by stream that flowed within, on, or beneath glacier.

- **Kettle**
 - depression in outwash created by melting large chunk of ice left buried in drift.
 - **Kettle lake** - kettle filled with water.
Other Glacial Deposits

- Lake Deposits
 - Varves - paired light and dark layers deposited annually in a glacial lake (fig. 12.33).
- Loess deposits
 - Wind blown glacial rock flour. In U.S., deposits range from 1.5 to 30 m thick and form some of the most fertile soils in Midwest (fig. 13.19).

Effect of Glaciers on North America

- Much of Canada scoured.
- Formed Great Lakes & Finger Lakes.
- Deposited till and flattened much of Midwest (especially Wood County).
- Extensive alpine glaciers shaped mountains (especially Rocky Mountains).

What Causes Glacial Ages?

1. Astronomical factors
2. Atmospheric factors
3. Tectonic factors
Astronomical Factors

- Milankovitch Theory
- Idea that glacial ages are relate to decreases in amount of solar radiation received by the Earth due to cyclical orbital variations.
 - Orbital Essentricity (100,000 year cycle)
 - Tilt of axis (41,000 year cycle)
 - Precession of axis (23,000 year cycle)

Atmospheric Factors

- Glacial ages are due to decreases in the amount of solar radiation that reaches the Earth’s surface.
- Decreases in solar radiation reaching the Earth’s surface may be due to increases in:
 - CO₂ in atmosphere
 - Volcanic ash
 - Dust and ash from meteorite impact

Tectonic Factors

- Glaciation is related to latitude, altitude, and moisture budget.
- Hence, glacial ages may correspond to changes in:
 - Position (latitude) of continents through time.
 - Mountain building and erosion.
 - Presence and magnitude of deep ocean currents.
Effects of Glaciation

- Sea level changes
 - Lower during glacial ages
- Crustal deformation
 - Isostatic rebound
- Stream drainage diversion
 - Ice dams
- Changes in pattern of precipitation
 - Pluvial lakes

Information from Ice Cores

- Provide time-correlated:
 - Sampling of air (gases and dust/ash) trapped at the time of snowfall.
 - Information on changes in precipitation patterns.
 - Information on temperature and rates of temperature change.